Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Med Virol ; 96(5): e29610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654702

RESUMO

In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.


Assuntos
Genoma Viral , Metagenômica , Vírus da Varíola dos Macacos , Varíola dos Macacos , Sequenciamento por Nanoporos , Sequenciamento Completo do Genoma , Humanos , Genoma Viral/genética , Metagenômica/métodos , Sequenciamento por Nanoporos/métodos , Varíola dos Macacos/epidemiologia , Varíola dos Macacos/virologia , Vírus da Varíola dos Macacos/genética , Vírus da Varíola dos Macacos/isolamento & purificação , Sequenciamento Completo do Genoma/métodos , Nanoporos , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
J Inorg Biochem ; 251: 112422, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016326

RESUMO

Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.


Assuntos
Citoglobina , Isoformas de RNA , Humanos , Citoglobina/química , Citoglobina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
3.
J Inorg Biochem ; 250: 112405, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977965

RESUMO

The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.


Assuntos
Globinas , Células Estreladas do Fígado , Animais , Camundongos , Citoglobina/genética , Citoglobina/metabolismo , Citoglobina/farmacologia , Perfilação da Expressão Gênica , Globinas/genética , Globinas/metabolismo , Células Estreladas do Fígado/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Transcriptoma
4.
Front Microbiol ; 14: 1253362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094626

RESUMO

For successful elucidation of a food-borne infection chain, the availability of high-quality sequencing data from suspected microbial contaminants is a prerequisite. Commonly, those investigations are a joint effort undertaken by different laboratories and institutes. To analyze the extent of variability introduced by differing wet-lab procedures on the quality of the sequence data we conducted an interlaboratory study, involving four bacterial pathogens, which account for the majority of food-related bacterial infections: Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The participants, ranging from German federal research institutes, federal state laboratories to universities and companies, were asked to follow their routine in-house protocols for short-read sequencing of 10 cultures and one isolated bacterial DNA per species. Sequence and assembly quality were then analyzed centrally. Variations within isolate samples were detected with SNP and cgMLST calling. Overall, we found that the quality of Illumina raw sequence data was high with little overall variability, with one exception, attributed to a specific library preparation kit. The variability of Ion Torrent data was higher, independent of the investigated species. For cgMLST and SNP analysis results, we found that technological sequencing artefacts could be reduced by the use of filters, and that SNP analysis was more suited than cgMLST to compare data of different contributors. Regarding the four species, a minority of Campylobacter isolate data showed the in comparison highest divergence with regard to sequence type and cgMLST analysis. We additionally compared the assembler SPAdes and SKESA for their performance on the Illumina data sets of the different species and library preparation methods and found overall similar assembly quality metrics and cgMLST statistics.

5.
NAR Genom Bioinform ; 5(3): lqad082, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705831

RESUMO

Deep learning has emerged as a paradigm that revolutionizes numerous domains of scientific research. Transformers have been utilized in language modeling outperforming previous approaches. Therefore, the utilization of deep learning as a tool for analyzing the genomic sequences is promising, yielding convincing results in fields such as motif identification and variant calling. DeepMicrobes, a machine learning-based classifier, has recently been introduced for taxonomic prediction at species and genus level. However, it relies on complex models based on bidirectional long short-term memory cells resulting in slow runtimes and excessive memory requirements, hampering its effective usability. We present MetaTransformer, a self-attention-based deep learning metagenomic analysis tool. Our transformer-encoder-based models enable efficient parallelization while outperforming DeepMicrobes in terms of species and genus classification abilities. Furthermore, we investigate approaches to reduce memory consumption and boost performance using different embedding schemes. As a result, we are able to achieve 2× to 5× speedup for inference compared to DeepMicrobes while keeping a significantly smaller memory footprint. MetaTransformer can be trained in 9 hours for genus and 16 hours for species prediction. Our results demonstrate performance improvements due to self-attention models and the impact of embedding schemes in deep learning on metagenomic sequencing data.

6.
Front Oncol ; 13: 1150629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124517

RESUMO

Background: Childhood cancer survivors (CCS) are at particularly high risk for therapy-related late sequelae, with secondary primary neoplasms (SPN) being the most detrimental. Since there is no standardized questionnaire for retrospective assessment of associations between prior cancer treatments and late health effects, we developed a self-administered questionnaire and validated it in a cohort of CCS. Methods: CCS of a first primary neoplasm (FPN, N=340) only or with a subsequent SPN (N=101) were asked whether they had received cancer therapies. Self-reports were compared to participants' medical records on cancer therapies from hospitals and clinical studies (N=242). Cohen's Kappa (κ) was used to measure their agreement and logistic regression was used to identify factors influencing the concordance. Associations between exposure to cancer therapies and late health effects (overweight/obesity, diseases of the lipid metabolism and the thyroid gland, cardiovascular diseases, occurrence of SPN) were analyzed in all participants by applying generalized linear mixed models to calculate odds ratios (OR) and 95% confidence intervals (95%CI). Results: For CCS of SPN, a perfect agreement was found between self-reports and medical records for chemotherapy (CT, κ=1.0) while the accordance for radiotherapy (RT) was lower but still substantial (κ=0.8). For the CCS of FPN the accordance was less precise (CT: κ=0.7, RT: κ=0.3). Cancer status, tumors of the central nervous system, sex, age at recruitment, vocational training, follow-up time, and comorbidities had no impact on agreement. CCS with exposure to CT were found to be less often overweight or obese compared to those without CT (OR=0.6 (95%CI 0.39; 0.91)). However, they were found to suffer more likely from thyroid diseases excluding thyroid cancers (OR=9.91 (95%CI 4.0; 24.57)) and hypercholesterolemia (OR=4.45 (95%CI 1.5; 13.23)). All other analyses did not show an association. Conclusion: Our new questionnaire proved reliable for retrospective assessment of exposure to CT and RT in CCS of SPN. For the CCS of FPN, self-reported RT was very imprecise and should not be used for further analyses. We revealed an association between late health outcomes occurring as hypercholesterolemia and thyroid diseases, excluding thyroid cancer, and the use of CT for the treatment of childhood cancer.

7.
Sci Rep ; 13(1): 7530, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161046

RESUMO

Myoglobin (MB) is expressed in different cancer types and may act as a tumor suppressor in breast cancer. The mechanisms by which basal MB expression level impacts murine mammary tumorigenesis are unclear. We investigated how MB expression in breast cancer influences proliferation, metastasis, tumor hypoxia, and chemotherapy treatment in vivo. We crossed PyMT and WapCreTrp53flox mammary cancer mouse models that differed in tumor grade/type and onset of mammary carcinoma with MB knockout mice. The loss of MB in WapCre;Trp53flox mice did not affect tumor development and progression. On the other hand, loss of MB decreased tumor growth and increased tissue hypoxia as well as the number of lung metastases in PyMT mice. Furthermore, Doxorubicin therapy prevented the stronger metastatic propensity of MB-deficient tumors in PyMT mice. This suggests that, although MB expression predicts improved prognosis in breast cancer patients, MB-deficient tumors may still respond well to first-line therapies. We propose that determining the expression level of MB in malignant breast cancer biopsies will improve tumor stratification, outcome prediction, and personalized therapy in cancer patients.


Assuntos
Carcinoma , Mioglobina , Animais , Camundongos , Mioglobina/genética , Biópsia , Modelos Animais de Doenças , Hipóxia/genética , Camundongos Knockout
8.
Front Oncol ; 13: 1158176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182169

RESUMO

Introduction: Long non-coding ribonucleic acids (lncRNAs) are involved in the cellular damage response following exposure to ionizing radiation as applied in radiotherapy. However, the role of lncRNAs in radiation response concerning intrinsic susceptibility to late effects of radiation exposure has not been examined in general or in long-term survivors of childhood cancer with and without potentially radiotherapy-related second primary cancers, in particular. Methods: Primary skin fibroblasts (n=52 each) of long-term childhood cancer survivors with a first primary cancer only (N1), at least one second primary neoplasm (N2+), as well as tumor-free controls (N0) from the KiKme case-control study were matched by sex, age, and additionally by year of diagnosis and entity of the first primary cancer. Fibroblasts were exposed to 0.05 and 2 Gray (Gy) X-rays. Differentially expressed lncRNAs were identified with and without interaction terms for donor group and dose. Weighted co-expression networks of lncRNA and mRNA were constructed using WGCNA. Resulting gene sets (modules) were correlated to the radiation doses and analyzed for biological function. Results: After irradiation with 0.05Gy, few lncRNAs were differentially expressed (N0: AC004801.4; N1: PCCA-DT, AF129075.3, LINC00691, AL158206.1; N2+: LINC02315). In reaction to 2 Gy, the number of differentially expressed lncRNAs was higher (N0: 152, N1: 169, N2+: 146). After 2 Gy, AL109976.1 and AL158206.1 were prominently upregulated in all donor groups. The co-expression analysis identified two modules containing lncRNAs that were associated with 2 Gy (module1: 102 mRNAs and 4 lncRNAs: AL158206.1, AL109976.1, AC092171.5, TYMSOS, associated with p53-mediated reaction to DNA damage; module2: 390 mRNAs, 7 lncRNAs: AC004943.2, AC012073.1, AC026401.3, AC092718.4, MIR31HG, STXBP5-AS1, TMPO-AS1, associated with cell cycle regulation). Discussion: For the first time, we identified the lncRNAs AL158206.1 and AL109976.1 as involved in the radiation response in primary fibroblasts by differential expression analysis. The co-expression analysis revealed a role of these lncRNAs in the DNA damage response and cell cycle regulation post-IR. These transcripts may be targets in cancer therapy against radiosensitivity, as well as provide grounds for the identification of at-risk patients for immediate adverse reactions in healthy tissues. With this work we deliver a broad basis and new leads for the examination of lncRNAs in the radiation response.

9.
Mol Med ; 29(1): 41, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997855

RESUMO

BACKGROUND: Differential expression analysis is usually adjusted for variation. However, most studies that examined the expression variability (EV) have used computations affected by low expression levels and did not examine healthy tissue. This study aims to calculate and characterize an unbiased EV in primary fibroblasts of childhood cancer survivors and cancer-free controls (N0) in response to ionizing radiation. METHODS: Human skin fibroblasts of 52 donors with a first primary neoplasm in childhood (N1), 52 donors with at least one second primary neoplasm (N2 +), as well as 52 N0 were obtained from the KiKme case-control study and exposed to a high (2 Gray) and a low dose (0.05 Gray) of X-rays and sham- irradiation (0 Gray). Genes were then classified as hypo-, non-, or hyper-variable per donor group and radiation treatment, and then examined for over-represented functional signatures. RESULTS: We found 22 genes with considerable EV differences between donor groups, of which 11 genes were associated with response to ionizing radiation, stress, and DNA repair. The largest number of genes exclusive to one donor group and variability classification combination were all detected in N0: hypo-variable genes after 0 Gray (n = 49), 0.05 Gray (n = 41), and 2 Gray (n = 38), as well as hyper-variable genes after any dose (n = 43). While after 2 Gray positive regulation of cell cycle was hypo-variable in N0, (regulation of) fibroblast proliferation was over-represented in hyper-variable genes of N1 and N2+. In N2+, 30 genes were uniquely classified as hyper-variable after the low dose and were associated with the ERK1/ERK2 cascade. For N1, no exclusive gene sets with functions related to the radiation response were detected in our data. CONCLUSION: N2+ showed high degrees of variability in pathways for the cell fate decision after genotoxic insults that may lead to the transfer and multiplication of DNA-damage via proliferation, where apoptosis and removal of the damaged genome would have been appropriate. Such a deficiency could potentially lead to a higher vulnerability towards side effects of exposure to high doses of ionizing radiation, but following low-dose applications employed in diagnostics, as well.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Criança , Perfilação da Expressão Gênica , Neoplasias/genética , Neoplasias/radioterapia , Estudos de Casos e Controles , Radiação Ionizante , Expressão Gênica , Relação Dose-Resposta à Radiação
10.
DNA Repair (Amst) ; 122: 103435, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549044

RESUMO

New development and optimization of oncologic strategies are steadily increasing the number of long-term cancer survivors being at risk of developing second primary neoplasms (SPNs) as a late consequence of genotoxic cancer therapies with the highest risk among former childhood cancer patients. Since risk factors and predictive biomarkers for therapy-associated SPN remain unknown, we examined the sensitivity to mild replication stress as a driver of genomic instability and carcinogenesis in fibroblasts from 23 long-term survivors of a pediatric first primary neoplasm (FPN), 22 patients with the same FPN and a subsequent SPN, and 22 controls with no neoplasm (NN) using the cytokinesis-block micronucleus (CBMN) assay. Mild replication stress was induced with the DNA-polymerase inhibitor aphidicolin (APH). Fibroblasts from patients with the DNA repair deficiency syndromes Bloom, Seckel, and Fanconi anemia served as positive controls and for validation of the CBMN assay supplemented by analysis of chromosomal aberrations, DNA repair foci (γH2AX/53BP1), and cell cycle regulation. APH treatment resulted in G2/M arrest and underestimation of cytogenetic damage beyond G2, which could be overcome by inhibition of Chk1. Basal micronuclei were significantly increased in DNA repair deficiency syndromes but comparable between NN, FPN, and SPN donors. After APH-induced replication stress, the average yield of micronuclei was significantly elevated in SPN donors compared to FPN (p = 0.013) as well as NN (p = 0.03) donors but substantially lower than for DNA repair deficiency syndromes. Our findings suggest that mild impairment of the response to replication stress induced by genotoxic impacts of DNA-damaging cancer therapies promotes genomic instability in a subset of long-term cancer survivors and may drive the development of an SPN. Our study provides a basis for detailed mechanistic studies as well as predictive bioassays for clinical surveillance, to identify cancer patients at high risk for SPNs at first diagnosis.


Assuntos
Sobreviventes de Câncer , Segunda Neoplasia Primária , Humanos , Criança , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/metabolismo , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Instabilidade Cromossômica , Instabilidade Genômica , Testes para Micronúcleos/métodos , Dano ao DNA , DNA/metabolismo , Fibroblastos/metabolismo
11.
Front Oncol ; 12: 1037276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324589

RESUMO

Background: Improved treatments for childhood cancer result in a growing number of long-term childhood cancer survivors (CCS). The diagnosis and the prevalence of comorbidities may, however, influence their lifestyle later in life. Nonetheless, little is known about differences in late effects between CCS of a first primary neoplasm (FPN) in childhood and subsequent second primary neoplasms (SPN) and their impact on lifestyle. Therefore, we aim to investigate associations between the occurrence of FPN or SPN and various diseases and lifestyle in the later life of CCS. Methods: CCS of SPN (n=101) or FPN (n=340) and cancer-free controls (n=150) were matched by age and sex, and CCS additionally by year and entity of FPN. All participants completed a self-administered questionnaire on anthropometric and socio-economic factors, medical history, health status, and lifestyle. Mean time between FPN diagnosis and interview was 27.3 years for SPN and 26.2 years for FPN CCS. To confirm results from others and to generate new hypotheses on late effects of childhood cancer as well as CCS´ lifestyles, generalized linear mixed models were applied. Results: CCS were found to suffer more likely from diseases compared to cancer-free controls. In detail, associations with cancer status were observed for hypercholesterinemia and thyroid diseases. Moreover, CCS were more likely to take regular medication compared to controls. A similar association was observed for CCS of SPN compared to CCS of FPN. In contrast to controls, CCS rarely exercise more than 5 hours per week, consumed fewer soft and alcoholic drinks, and were less likely to be current, former, or passive smokers. Additionally, they were less likely overweight or obese. All other exploratory analyses performed on cardiovascular, chronic lung, inflammatory bone, allergic, and infectious diseases, as well as on a calculated health-score revealed no association with tumor status. Conclusion: CCS were more affected by pathologic conditions and may consequently take more medication, particularly among CCS of SPN. The observed higher disease burden is likely related to the received cancer therapy. To reduce the burden of long-term adverse health effects in CCS, improving cancer therapies should therefore be in focus of research in this area.

12.
PLoS One ; 17(10): e0275725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223378

RESUMO

Myoglobin (MB) is known to bind and deliver oxygen in striated muscles at high expression levels. MB is also expressed at much reduced levels in mammary epithelial cells, where the protein´s function is unclear. In this study, we aim to determine whether MB impacts fatty acid trafficking and facilitates aerobic fatty acid ß-oxidation in mammary epithelial cells. We utilized MB-wildtype versus MB-knockout mice and human breast cancer cells to examine the impact of MB and its oxygenation status on fatty acid metabolism in mouse milk and mammary epithelia. MB deficient cells were generated through CRISPR/Cas9 and TALEN approaches and exposed to various oxygen tensions. Fatty acid profiling of milk and cell extracts were performed along with cell labelling and immunocytochemistry. Our findings show that MB expression in mammary epithelial cells promoted fatty acid oxidation while reducing stearyl-CoA desaturase activity for lipogenesis. In cells and milk product, presence of oxygenated MB significantly elevated indices of limited fatty acid ß-oxidation, i.e., the organelle-bound removal of a C2 moiety from long-chain saturated or monounsaturated fatty acids, thus shifting the composition toward more saturated and shorter fatty acid species. Presence of the globin also increased cytoplasmic fatty acid solubility under normoxia and fatty acid deposition to lipid droplets under severe hypoxia. We conclude that MB can function in mammary epithelia as intracellular O2-dependent shuttle of oxidizable fatty acid substrates. MB's impact on limited oxidation of fatty acids could generate inflammatory mediator lipokines, such as 7-hexadecenoate. Thus, the novel functions of MB in breast epithelia described herein range from controlling fatty acid turnover and homeostasis to influencing inflammatory signalling cascade. Future work is needed to analyse to what extent these novel roles of MB also apply to myocytic cell physiology and malignant cell behaviour, respectively.


Assuntos
Ácidos Graxos , Metabolismo dos Lipídeos , Animais , Extratos Celulares , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Mioglobina/metabolismo , Oxigênio/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
13.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232784

RESUMO

The expression of myoglobin (MB), well known as the oxygen storage and transport protein of myocytes, is a novel hallmark of the luminal subtype in breast cancer patients and correlates with better prognosis. The mechanisms by which MB impacts mammary tumorigenesis are hitherto unclear. We aimed to unravel this role by using CRISPR/Cas9 technology to generate MB-deficient clones of MCF7 and SKBR3 breast cancer cell lines and subsequently characterize them by transcriptomics plus molecular and functional analyses. As main findings, loss of MB at normoxia upregulated the expression of cell cyclins and increased cell survival, while it prevented apoptosis in MCF7 cells. Additionally, MB-deficient cells were less sensitive to doxorubicin but not ionizing radiation. Under hypoxia, the loss of MB enhanced the partial epithelial to mesenchymal transition, thus, augmenting the migratory and invasive behavior of cells. Notably, in human invasive mammary ductal carcinoma tissues, MB and apoptotic marker levels were positively correlated. In addition, MB protein expression in invasive ductal carcinomas was associated with a positive prognostic value, independent of the known tumor suppressor p53. In conclusion, we provide multiple lines of evidence that endogenous MB in cancer cells by itself exerts novel tumor-suppressive roles through which it can reduce cancer malignancy.


Assuntos
Neoplasias da Mama , Mioglobina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclinas/metabolismo , Doxorrubicina/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética
14.
BMC Neurosci ; 23(1): 59, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243678

RESUMO

BACKGROUND: The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS: In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS: HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS: sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.


Assuntos
Fármacos Neuroprotetores , Focas Verdadeiras , Animais , Encéfalo/metabolismo , Clusterina/genética , Furões/genética , Furões/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipóxia , Camundongos , Neurônios/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Transcriptoma
15.
BMC Genomics ; 23(1): 677, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180835

RESUMO

BACKGROUND: With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). RESULTS: The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. CONCLUSIONS: The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7 .


Assuntos
Acantocéfalos , Doenças dos Peixes , Acantocéfalos/química , Acantocéfalos/genética , Acantocéfalos/metabolismo , Animais , Antiparasitários/farmacologia , Doenças dos Peixes/parasitologia , Peixes , Ligantes , Tadalafila/metabolismo , Fluxo de Trabalho
16.
Mol Med ; 28(1): 105, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068491

RESUMO

BACKGROUND: The etiology and most risk factors for a sporadic first primary neoplasm in childhood or subsequent second primary neoplasms are still unknown. One established causal factor for therapy-associated second primary neoplasms is the exposure to ionizing radiation during radiation therapy as a mainstay of cancer treatment. Second primary neoplasms occur in 8% of all cancer survivors within 30 years after the first diagnosis in Germany, but the underlying factors for intrinsic susceptibilities have not yet been clarified. Thus, the purpose of this nested case-control study was the investigation and comparison of gene expression and affected pathways in primary fibroblasts of childhood cancer survivors with a first primary neoplasm only or with at least one subsequent second primary neoplasm, and controls without neoplasms after exposure to a low and a high dose of ionizing radiation. METHODS: Primary fibroblasts were obtained from skin biopsies from 52 adult donors with a first primary neoplasm in childhood (N1), 52 with at least one additional primary neoplasm (N2+), as well as 52 without cancer (N0) from the KiKme study. Cultured fibroblasts were exposed to a high [2 Gray (Gy)] and a low dose (0.05 Gy) of X-rays. Messenger ribonucleic acid was extracted 4 h after exposure and Illumina-sequenced. Differentially expressed genes (DEGs) were computed using limma for R, selected at a false discovery rate level of 0.05, and further analyzed for pathway enrichment (right-tailed Fisher's Exact Test) and (in-) activation (z ≥|2|) using Ingenuity Pathway Analysis. RESULTS: After 0.05 Gy, least DEGs were found in N0 (n = 236), compared to N1 (n = 653) and N2+ (n = 694). The top DEGs with regard to the adjusted p-value were upregulated in fibroblasts across all donor groups (SESN1, MDM2, CDKN1A, TIGAR, BTG2, BLOC1S2, PPM1D, PHLDB3, FBXO22, AEN, TRIAP1, and POLH). Here, we observed activation of p53 Signaling in N0 and to a lesser extent in N1, but not in N2+. Only in N0, DNA (excision-) repair (involved genes: CDKN1A, PPM1D, and DDB2) was predicted to be a downstream function, while molecular networks in N2+ were associated with cancer, as well as injury and abnormalities (among others, downregulation of MSH6, CCNE2, and CHUK). After 2 Gy, the number of DEGs was similar in fibroblasts of all donor groups and genes with the highest absolute log2 fold-change were upregulated throughout (CDKN1A, TIGAR, HSPA4L, MDM2, BLOC1SD2, PPM1D, SESN1, BTG2, FBXO22, PCNA, and TRIAP1). Here, the p53 Signaling-Pathway was activated in fibroblasts of all donor groups. The Mitotic Roles of Polo Like Kinase-Pathway was inactivated in N1 and N2+. Molecular Mechanisms of Cancer were affected in fibroblasts of all donor groups. P53 was predicted to be an upstream regulator in fibroblasts of all donor groups and E2F1 in N1 and N2+. Results of the downstream analysis were senescence in N0 and N2+, transformation of cells in N0, and no significant effects in N1. Seven genes were differentially expressed in reaction to 2 Gy dependent on the donor group (LINC00601, COBLL1, SESN2, BIN3, TNFRSF10A, EEF1AKNMT, and BTG2). CONCLUSION: Our results show dose-dependent differences in the radiation response between N1/N2+ and N0. While mechanisms against genotoxic stress were activated to the same extent after a high dose in all groups, the radiation response was impaired after a low dose in N1/N2+, suggesting an increased risk for adverse effects including carcinogenesis, particularly in N2+.


Assuntos
Sobreviventes de Câncer , Proteínas Imediatamente Precoces , Segunda Neoplasia Primária , Neoplasias , Adulto , Estudos de Casos e Controles , Criança , Proteínas F-Box , Fibroblastos/efeitos da radiação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Segunda Neoplasia Primária/genética , Proteínas Nucleares , Receptores Citoplasmáticos e Nucleares , Sestrinas , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor
17.
Elife ; 112022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700329

RESUMO

Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.


Assuntos
Globinas , Infertilidade Masculina , Animais , Fertilidade , Globinas/metabolismo , Infertilidade Masculina/genética , Masculino , Mamíferos , Camundongos , Camundongos Knockout , Sêmen , Cauda do Espermatozoide , Espermátides/metabolismo , Espermatozoides , Testículo/metabolismo
18.
Cell Biosci ; 12(1): 75, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642000

RESUMO

BACKGROUND: A central question in parasitology is why parasites mature and reproduce in some host species but not in others. Yet, a better understanding of the inability of parasites to complete their life cycles in less suitable hosts may hold clues for their control. To shed light on the molecular basis of parasite (non-)maturation, we analyzed transcriptomes of thorny-headed worms (Acanthocephala: Pomphorhynchus laevis), and compared developmentally arrested worms excised from European eel (Anguilla anguilla) to developmentally unrestricted worms from barbel (Barbus barbus). RESULTS: Based on 20 RNA-Seq datasets, we demonstrate that transcriptomic profiles are more similar between P. laevis males and females from eel than between their counterparts from barbel. Impairment of sexual phenotype development was reflected in gene ontology enrichment analyses of genes having differential transcript abundances. Genes having reproduction- and energy-related annotations were found to be affected by parasitizing either eel or barbel. According to this, the molecular machinery of male and female acanthocephalans from the eel is less tailored to reproduction and more to coping with the less suitable environment provided by this host. The pattern was reversed in their counterparts from the definitive host, barbel. CONCLUSIONS: Comparative analysis of transcriptomes of developmentally arrested and reproducing parasites elucidates the challenges parasites encounter in hosts which are unsuitable for maturation and reproduction. By studying a gonochoric species, we were also able to highlight sex-specific traits. In fact, transcriptomic evidence for energy shortage in female acanthocephalans associates with their larger body size. Thus, energy metabolism and glycolysis should be promising targets for the treatment of acanthocephaliasis. Although inherently enabling a higher resolution in heterosexuals, the comparison of parasites from definitive hosts and less suitable hosts, in which the parasites merely survive, should be applicable to hermaphroditic helminths. This may open new perspectives in the control of other helminth pathogens of humans and livestock.

19.
J Immunol ; 208(5): 1280-1291, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121641

RESUMO

Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.


Assuntos
Neoplasias Associadas a Colite/patologia , Colite/patologia , Neoplasias Colorretais/patologia , Mucosa Intestinal/patologia , Oxigenases de Função Mista/metabolismo , Adenosina/metabolismo , Animais , Azoximetano/toxicidade , Hipóxia Celular/fisiologia , Colite/induzido quimicamente , Colite/genética , Neoplasias Associadas a Colite/genética , Colo/patologia , Neoplasias Colorretais/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Prolil Hidroxilases/metabolismo , Transdução de Sinais/fisiologia , Evasão Tumoral/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
JMIR Res Protoc ; 10(11): e32395, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762066

RESUMO

BACKGROUND: Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. OBJECTIVE: Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. METHODS: We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). RESULTS: Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). CONCLUSIONS: This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/32395.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...